您的位置:   网站首页    行业动态    耐磨超双疏技术专题及应用场景

耐磨超双疏技术专题及应用场景

阅读量:3627749 2019-10-21


2017年4月,在美空军研究实验室支持下,密歇根大学开发出由“氟化聚氨酯弹性体”和“F-POSS”疏水分子互溶形成的自愈型超疏水涂层材料。该材料拥有百倍于同类涂料的耐久性,可为舰船、飞机和战车提供兼具耐久性的防水、防结冰、自清洁能力。
在表面科学、仿生学以及多领域学科的交叉融合推动下,新型超疏水材料层出不穷,其优秀的润湿特性和广泛的应用前景,引起了各国的广泛关注。
超疏水材料的技术原理
超疏水性是一种特殊的润湿性,一般指水滴在固体表面呈球状,接触角大于150度,滚动角小于10度。材料表面能(材料表面分子比内部分子多出的能量)越低,疏水性越好,且当低表面能材料具有微观粗糙结构时,水滴与材料之间会形成一层空气膜,阻碍水对材料表面的润湿,从而形成超疏水状态。

超疏水表面最初的灵感来源于“荷叶效应”。20 世纪90 年代,德国植物学家波恩大学Barthlott等揭示了荷叶表面的结构,发现荷叶的“自洁性”源于其表面的微纳结构,荷叶表面具有微米级的乳突,乳突上有纳米级的蜡晶物质,这种微-纳米级的粗糙结构可以大幅度提高水滴在其上的接触角,导致水滴极易滚落。

因为水滴在超疏水材料表面滚落时可带走污染物,使材料表面保持清洁。因此超疏水材料具有防水、防腐蚀、防冰以及防附着等多重特性。

超疏油涂料减少滴胶针头黏胶效果对比视频

耐磨超疏水耐摩擦性测试
构造超疏水表面有两种方法,一是在疏水材料表面上构建微观粗糙结构,二是用低表面能物质对微观粗糙表面进行改性。
由于超疏水材料表面的微纳结构是决定其超疏水性的主要因素,而这种微观粗糙结构通常存在强度低、机械强度差、耐磨性差等问题,容易被外力破坏,导致超疏水性的丧失。因此,提高超疏水材料的耐久性是决定材料品质的关键。

人工制备超疏水表面虽然时间不长,但发展特别迅速,有效的制备方法也越来越多,主要有模板法、静电纺丝法、相分离与自组装法、溶胶-凝胶法、刻蚀法、水热法、化学沉积与电沉积法、纳米二氧化硅法、腐蚀法等。目前人工超疏水表面主要包括超疏水薄膜表面超疏水涂层表面、超疏水金属表面及超疏水织物等方面。
 国外超疏水材料在国防领域的应用
1. 应用于装备,提升装备的防腐蚀、防生物附着、防冰和自清洁能力
在防腐蚀方面,超疏水材料可以阻断水分与金属材质的接触,从而缓解舰艇水线以上部分的氧化腐蚀。2010年,美国海军在“麦克福尔”号驱逐舰上使用超疏水涂层材料保护舰船武器系统以及其他暴露在外的装备,防止这些系统和装备被盐雾锈蚀侵害。

耐磨超疏水用于5G天线罩减少雨衰效应
在防生物附着方面,超疏水材料可以有效防止海洋生物在舰船表面的附着,可以作为舰船防污涂料。传统防污涂料依靠释放砷、铜、铅等金属离子杀死附着生物,超疏水材料则具有环保特性,可以减少有色金属的使用。
在防冰方面,超疏水涂层因具有能耗低、适用范围广、环境友好等优点而在航空、舰船、电力,通信、能源等领域的防结/覆冰雪方面显示出潜在的工程应用前景。2016年6月,美国莱斯大学研制出可高效防冰的石墨烯复合超疏水材料,当温度高于-14℃时,冰无法在材料表面凝结。利用石墨烯的导电特性,在更低温度下该材料可以通过电加热来防冰或除冰,只需施加12伏的电压就可使材料在-51℃低温下防结冰。 
在自清洁方面,超疏水材料表面特殊微纳米结构使污染物在材料表面的附着力降低,同时,超疏水材料的防水特性可使表面的水滴滚落时带走污染物,保持材料表面的清洁。
2. 应用于服装加工,提升人员防护能力
超疏水(超疏油)布料可应用于各类防水透气型工作服和新型生化防护服。例如,在执行任务过程中,空军飞行员、海军士兵和特种兵等突然浸没在冷水中会导致体温下降,是造成人员伤亡的主要因素之一。防水透气型服装已作为美军空军飞行员、船员和执行海陆空行动等特种兵的专用服装。该类服装在温度为20℃的冷水中,能提供高达24小时的保护作用,并且穿着轻便、舒适。防水透气织物的应用,不仅解决了透气和防水的矛盾,而且可以减轻雨衣的重量,从而有效减轻士兵的负荷量。

美空军研究实验室与国防部威胁降低局联合开展了相关项目的研究,并于201 0年开发出基于超双疏(超疏水和超疏油)布料的生化防护服。该服装具有自清洁性能,且可以避免危险化学品渗入,保护士兵不受生化武器威胁。
3. 其他创新应用方向
(1)提高电池效率及散热率。超疏水材料用于电池系统的电极隔膜,可将电解液和活性电极材料分隔开,防止副反应发生。2016年7月,德国亚琛工业大学和韩国首尔汉阳大学开发出新型纳米孔超疏水隔膜材料。使用这种新型超疏水隔膜后,电池能量转换效率达到85%,高于传统方法76%的转换效率。
超疏水涂层可以利用其疏水性提高散热效率。2016年3月,罗斯科学院热物理研究所开发出用于提高热交换设备散热效率的氟聚合物涂层制备技术。该技术涂层可促进液体蒸气在设备表面加速冷凝,散热效率要远远高于薄膜冷却法。同时,冷凝液形成的过程带走热量,形成的液体又用于新的散热循环。(2)新型水上机器人。 水黾具有独特的漂浮机制和高效的划水方式,在水面环境中能够低耗、低噪、高效、灵活地漂浮、划行和跳跃。水黾腿表面的微观多级结构具有超疏水性,可以支撑水黾在水面自由活动。近年来,越来越多的学者开始研究水黾独特的漂浮机制和高效的划水方式。
2015年8月,韩国首尔大学和美国哈佛大学共同研制出仿水黾机器人。该机器人与水黾大小一致,可在水面跳跃。在军事领域,水黾机器人可以作为微型侦察机器人,利用在水面快速灵活的运动特性执行特殊任务。

(3)定向集水。合理利用材料的超疏水性以及超亲水性,在指定区域赋予材料不同的润湿特性,可以用于在沙漠等干旱环境下作战时的饮用水收集,解决人员生存等问题。2016年6月,美国西北太平洋国家实验室研制出可实现水分逆向流动的碳纳米棒材料。这种材料可在低湿度空气环境中,将水蒸气转变成液态水并吸附在表面;在高湿度空气环境中,材料具有疏水性,且湿度越高,材料表面水滴蒸发越快。这种材料可以用在沙漠中取水;如果用在服装中,可以在高湿度环境中保持干燥舒爽。
(4)油水分离。 在被油污染的水域获取水源,需要使用快速、高效的油水分离装置。近年来,材料表面的润湿性成为解决这个困难的关键,一旦材料展现出对油和水不同的润湿性,如超疏水-超亲油性、超亲水-超疏油性,则这种材料可用于实现油水分离。此外,油水分离器还可用于解决海洋石油泄漏等环境问题。

目前,超疏水材料技术正向智能化、可调控、多功能及高性能方向发展,在武器装备防护、能源及其他创新领域展现出广阔的应用前景。未来在多学科交叉融合发展的影响下,超疏水材料技术将与仿生技术、纳米技术以及材料计算技术等紧密结合,逐步突破机械性能与耐用性能的应用瓶颈,在众多领域发挥更大应用价值。
如需要耐磨超疏水,请联系霍先生15015129002 微信同号.

回复关键字,获取相关主题精选文章
电子产品:手机  |  耳机  |  手表  |  音箱  | Pcba  | 平板
纺织产品:鞋子  |  衣服  |  布料  |  玻璃  |  透音网  
防水技术:派瑞林  |  PECVD  |  防水剂  |  三防漆  |  超疏水  
检测项目:沾水法  | 透气性  |  盐雾测试  |  防水等级  | 耐腐蚀 | 绝缘性
其他主题文章陆续整理中,敬请期待······

在线QQ咨询,点这里

QQ咨询

微信服务号